Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference
نویسندگان
چکیده
Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today’s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%. Keywords— Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملModeling Unreliable Observations in Bayesian Networks by Credal Networks
Bayesian networks are probabilistic graphical models widely employed in AI for the implementation of knowledge-based systems. Standard inference algorithms can update the beliefs about a variable of interest in the network after the observation of some other variables. This is usually achieved under the assumption that the observations could reveal the actual states of the variables in a fully ...
متن کاملIntegration of Seasonal Autoregressive Integrated Moving Average and Bayesian Methods to Predict Production Throughput under Random Variables
Analysing and modelling efforts on production throughput are getting more complex due to random variables in today’s dynamic production systems. The objective of this study is to take multiple random variables of production into account when aiming for production throughput with higher accuracy of prediction. In the dynamic manufacturing environment, production lines have to cope with changes i...
متن کاملFast Causal Network Inference over Event Streams
This paper addresses causal inference and modeling over event streams where data have high throughput and are unbounded. The availability of large amount of data along with the high data throughput present several new challenges related to causal modeling, such as the need for fast causal inference operations while ensuring consistent and valid results. There is no existing work specifically fo...
متن کاملPansombut, Tatdow. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data. (under the Direction of Prof. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data
PANSOMBUT, TATDOW. Advanced Learning Techniques for Improved Inference of Bayesian Belief Networks from Uncertain and High-dimensional Data. (Under the direction of Prof. Nagiza F. Samatova and Prof. Dennis R. Bahler.) A Bayesian Belief Network (BBN) is a powerful probabilistic learning model, it has been used successfully in many problem domains, such as medical diagnostics, computational biol...
متن کامل